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Abstract!

This paper presents a new approach to the range data utilization in a gesture-tracking system. Using
three-dimensional data is essential for human motion analysis; however, the speed of complete range
estimation prohibits from including it in most real-time systems. This work describes a gesture-tracking
system using real-time local range on-demand. The system represents a gesture-controlled interface for
interactive visual exploration of large data sets. The paper describes a method performing range processing
only when necessary and where necessary. Range data is processed only for non-static regions of interest.
This is accomplished by a set of filters on the color, motion, and range data. The speedup achieved
is between 1.70 and 2.15. The algorithm also includes a robust skin-color segmentation insensitive to
illumination changes. Selective range processing results in dynamic regional range images that contain

only information needed by the system.
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1 Introduction

1.1 Applicational Requirements

Recent years have seen a drastic increase in the size and complexity of scientific data. The National
Institutes of Health’s (NIH) Visible Human project generated data sets of a single 3-D volume consisting of
12 billion elements. Nearly a terabyte of satellite data is produced daily. Advanced physics simulation here,
at Lawrence Livermore National Laboratory (LLNL), is responsible for generating large data sets, which are
expected to increase to one terabyte every five minutes by 2004. Traditional visualization represents the last
step in data processing. However, the efficiency of such processing suffers when errors are discovered at this
point, and the entire data analysis cycle has to start over. Therefore, the trend in data growth is amplified
by increasing requirements for interactive data access, display, exploration, analysis and collaboration.
Focused on the development of efficient techniques addressing these requirements, the SAVAnTS (Scalable
Algorithms for Visualization and Analysis of Terascale Science) project is a collaboration between the
Center for Applied Scientific Computing at LLNL and multiple academic partners. With such substantial
amounts of data to explore, we are also interested in developing new interactive settings that would allow
scientists to explore their data in a more intuitive environment. The data would be projected onto a large
screen (Figure 1(a)), and updated in real-time following gesture-based commands of interacting scientists.
The gesture-tracking system described in this paper will be responsible for supplying data manipulation
parameters to interactive data exploration and collaborative visualization software (Figure 1(b)), and to

virtual reality systems.

Figure 1: (a) A four-projector display with a 2560x2048 resolution used for interactive applications. (b)
An example of intaractive manipulation of isosurface and volume rendering parameters.



Since the system is being developed as a front end for gesture-controlled large-scale visualization and
virtual reality manipulation, certain requirements and complications are obvious. First, 3-D information
is required, not necessarily at a video-frame rate, but at least a few times per second (optimal parameters
should be determined as a result of testing on a large group of people). Second, not only arms or hands,
but also the entire body of the interacting person is moving. More over, interaction will take place in
front of the large screen where the data being manipulated will be displayed. Most of the time the data
will be updated dynamically as a result of such manipulations; and, therefore, traditional techniques such
as background subtraction cannot easily separate a figure from the background. Third, motion of the
interacting person should be natural and should result in intuitive data manipulation, where intuitive

means easily learned and fast to provide immediate results.

1.2 Previous Work in Gesture Tracking

Object tracking from image sequences is a very important research domain. Goals of object tracking include
segmenting each frame into differently moving objects, selecting the object of interest, and analyzing its
motion during the entire sequence or multiple sequences. Object tracking, therefore, involves processing of
both spatial and temporal data. A number of applications is dealing with tracking the motion of the human
body. These applications include video-surveillance, gesture-based interfaces for multimedia applications
and systems, and interfaces for people with disabilities that prevent them from using the standard input
technology, and videoconferencing. The most popular mode of human-computer interaction (HCI) is
based on devices like keyboards and mice, which limit the speed and naturalness of the interaction [1].
Researchers continue to investigate ways to use human communication through movement as a natural
means of interacting with computers. They strive to design and develop computer interfaces that capture
and interpret such human movement. Another application is object manipulation in virtual environments.

Traditional approaches to tracking typically relied on segmentation of the intensity data, using motion
or appearance data. A majority of the methods began by segmenting the human body from the back-
ground. For instance, in “blob approaches” people were modeled as a number of blobs resulting from pixel
classification based on their color and position in the image. Wren et al. [2] achieved segmentation by

classifying pixels into one of several models, including a static world and a dynamic user represented by



gaussian blobs. Yang and Ahuja [3] used skin color and the geometry of palm and face regions for seg-
mentation stages of their system. A Gaussian mixture (with parameters estimated by an EM algorithm)
modeled the distribution of skin-color pixels. Rehg and Kanade [4] used a 3-D hand model to track a
hand. They compared line features from the images with the projected model, and performed incremental
state corrections. Similar work was presented by Kuch and Huang [5] in which the synthesis process could
fit the hand model to any person’s hand. Bobick and Wilson [6] treated gesture as a sequence of states
and computed configuration states along prototype gestures. Yacoob and Black proposed parameterized
representation of human movement [7]. Cutler and Davis [8] segmented the motion and computed a mov-
ing objects self-similarity (including human motion experiments). Significant work is being performed in
the area of recognition where hidden Markov models are often employed successfully ([9, 10]) by allowing
researchers to address the highly stochastic nature of human gestures. A review by Aggarwal and Cai [11]
classified approaches to human motion analysis, the tasks involved, and major areas related to human mo-
tion interpretation. A review by Pavlovic et al. [1] addressed main components and directions in gesture
recognition research for HCI.

It is known that color-based skin detection techniques are susceptible to variability in lighting condi-
tions [1]. Some common solutions included [1]: specially colored gloves or markers, restrictive backgrounds
or clothing, prior knowledge of initial hand positions, or movement restrictions. A goal of our project
is to exclude such simplifications. Instead, we use the SCT/Center algorithm that can handle changing
illumination. It was originally developed for skin cancer detection using color features [12]. Later the
algorithm was successfully tested for position estimation of micro-rovers [13]. Other similar solutions for

decoupling intensity from color information were also recently investigated ([9]).

1.3 Motivation for Range On-Demand Approach

Usefulness of 3-D data in gesture-analysis applications is not questionable because the projection of human
movement is always affected by the observation viewpoint and the distance from the camera [7]. Since
machine vision systems try to recover useful information about a scene from its projections, having three-
dimensional (3-D) data eliminates ambiguities in solving the inversion of a many-to-one mapping [14].

Most gesture-tracking and recognition applications could certainly benefit from including range data and



having more information recovered from a scene. Until recently, however, using range data for tracking
was not feasible because of the speed and cost considerations.

Some authors used multiple cameras and models to obtain 3-D locations of body parts. Azarbayejani
and Pentland [15] triangulated on blobs composing a model. Gavrila and Davis [16] addressed whole-body
tracking with four cameras placed in the corners of the room. Segen and Kumar [17] used depth cues from
projections of the hand and its shadow for 3-D hand pose estimation. Moeslund and Granum estimated
3-D poses from a monocular system by modeling degrees of freedom and by using the analysis-by synthesis
approach ([18]). Davis and Shah presented a tracking method by fitting 3-D models (generalized cylinders)
to fingers in a 2-D image [14]. Otherwise, range data was used in motion analysis primarily in an offline
mode [19, 20].

Recent availability of less expensive, faster range data makes it a feasible additional source of infor-
mation for tracking. This is the first real-time gesture-tracking system that utilizes on-demand range in
both spatial and temporal representations (some initial results have previously appeared in [21]). It will be
applied to natural navigation and visualization of large data sets. The method is also applicable to virtual
reality systems. Oda et al. [22] reported application of a real-time range to virtual reality which utilized
comparison of the depth information in real and synthetic data. In addition to efficient range process-
ing, the proposed method also deals with the major shortcoming of color-based localization methodologies

variability of the skin-color classification results under different illumination conditions.
2 Description of the Method

The entire algorithm of the range on-demand approach is shown in Figure 2. Both color and range image
are grabbed synchronously (box 1), and color image is extracted and rectified (corrected for lens distortions).
However, range is not processed at this point (box 2) as one would expect. Instead, numerous filters are
applied to the data as described below. These filters achieve a goal of localizing regions of interest (ROIs),
specifically hands for our application (since their motion will provide input to visualization programs).
First, color feature filters are applied (box 3). The spherical coordinate transform (SCT) separates color
and brightness information. Color normalization provides SCTs insensitivity to variations in illumination.

LAB space is computed, and pixels are classified as skin are computed using derived statistical data. A skin



classifier with minimum distance classifier using Mahalanobis distance selects pixels that can be considered

skin pixels.
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Figure 2: Algorithm of the range on-demand approach.

Noise is removed by a sequence of erosions and dilations (box 4). The connected component analysis
is performed next by scanning from left to right and from top to bottom, labeling, and evaluating equiv-
alencies. Resulting regions are sorted, and small regions are removed from further consideration. Region
area is evaluated with respect to the image size (box 5). Other geometry and shape filters are designed to

eliminate regions with unlikely shapes for human faces or hands, including long regions, regions with very



few pixels (less than 30 %) classified as skin.

Human hands and faces are difficult to detect when only color information is used. Experiments
described in the next section use a simulation of a possible virtual scene with objects of various shapes and
sizes, and a robotic hand that could be following human gestures in a completed back-end virtual reality
application. To confuse the program, one of the objects, a ball in the center of the scene, is given color
properties very similar to human skin.

That is why additional filters are set to prevent such confusion. A static region detection filter (defined
for frames after the first) determines the absence of current motion for a given region (box 8). The
filter evaluates current motion proportionally to the average noise level and the image size (since motion
considered neglectable for relatively large images can be considered important for smaller ones). The
process results in dynamic regional range images (DRRIs). Static regions are shown on DRRIs as outlines
only, since range is not computed for them. DRRIs contain range information for regions of interest (with
pixels still classified as skin after color- and geometry-based filters) moving in the current frame, outlines
for static regions and recent motion information for both.

Only non-static regions (box 12) are selected for range processing (box 13), which takes place at this
point (again let us note that color and range were grabbed synchronously, only the range processing was
postponed). Stereo is estimated only for selected ROIs. Thus, the computation bottleneck is greatly reduced
(see the next section for speedup percentages vs. region sizes).

Next, the depth analysis filter (box 14) evaluates whether ROIs exhibit face or hands geometry; since
the depth is known at this step, absolute sizes are computed. Non-human regions are excluded from the
motion computation, but are currently still tracked on the color images and DRRIs for visual purposes.
If skin-colored moving objects pass previous filters, then they are unveiled at this point (and not included
into motion computation in box 17). To increase the speed even further, range can be selected for region

analysis only for every n color images in box 6 (depending on the application, in this work n=4).
3 Experimental Results

The following experiments involve application of the algorithm to color and range image sequences of

gestures. Triclops color stereo vision system (manufactured by Point Grey Research, Vancouver, Canada)



is used to capture these sequences [24]. The module connects to a single-processor Pentium III PC.
Range information is recovered in real time from a correlation-based trinocular stereo algorithm.
Typical color and range images produced by the stereo vision system are shown in Figure 3. Closer
objects appear lighter in the range data, except for the darkest areas (for instance, some hair and far wall
regions), indicating that no correspondence was found during the stereo matching process. As a result
of applying color information-based filters, skin regions are selected (shown as white areas in the binary

image in Figure 4(a), and as rectangular enclosing boxes in Figure 4(b)).

(2)

Figure 4: Pixels classified as skin as a result of applying color information-based filters.

Selected frames from sequences of intensity images and DRRIs are shown in Figures 5 and 6. Frames
are chosen when both color and range information were scheduled to be processed (every n-th frame in the

algorithm, where n=>5). To tell the preparation stage from the nucleus and retraction stages, interactors



will use a fist as if grabbing the object being manipulated. That is why frames taken during gestures
signifying object operations show persons using closed fists. Since manipulation of virtual objects is one
of popular applications of hand gestures [1], the background represents a scene with virtual objects and
a robotic arm-manipulator, one of them (a ball) is skin-colored. Of course, the main application of the
system, as discussed in the Introduction, will be interactive exploration of visualized large data sets.

The first sequence (Figure 5) shows tracking of a zoom gesture (hand moving toward the camera). First
frame processing results show that all three candidate skin regions are detected: the face, the hand, and
the virtual ball (created as a distracter with color similar to skin). These regions pass color feature filters,
noise removal and region geometry filters, and static region detection filters (since relative motion is not
defined for the first frame). However, the ball is not tracked beyond the first frame since it is obviously
a static object. Note that the tracking system developed is a front-end for the interactive visualization
software, and, therefore, background subtraction is not the best option in the general case. No apparently
static regions are processed (the face and the ball). Otherwise, they would have been excluded from motion
analysis on the basis of depth or size or both by the last filters. Hand motion was detected in frames 3, 7
and 10, and reflected in respective DRRIs.

Similarly, the second sequence tracking a translational gesture (hand motion side-to-side in Figure 6)
contains hand motion in six frames (not considering the first one) and head motion in two frames (8 and
9). Obviously, keeping one’s head completely motionless is not a practical consideration, and head motion
is present in all frames. In most frames, however, it does not pass the small motion filter (based on the
average noise level and the image size). The number of frames when the range is computed is also a
function of the motion velocity (greater in the second sequence which results in more inter-frame hand
motion passing the “static” filter).

DRRIs can be included in motion analysis, trajectory computation, gesture recognition, to determine
what types of gestures are natural and feasible for robust tracking and interpretation for interactive ex-
ploration of large data sets and virtual environments. They can be plotted in a 3-D space for movement
trajectory parameterization. Also they can produce (also in 3-D) templates for recognition of movements

somewhat similar to the temporal templates [23].



Figure 5: Tracking of skin-color regions (first and third columns) and progress in DRRIs (second and fourth
columns) for zoom gesture (hand moving towards the camera).



Figure 6: Tracking of skin-color regions (first and third columns) and progress in DRRIs (second and fourth
columns) for translation gesture (hand moving side-to-side).
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Tables 1 and 2 contain statistics for corresponding motion sequences. Frame numbers correspond to
respective frames in figures. “Number of ROIs” column indicates regions selected for range processing,
next column contains their total area. Percentage of total image size is also included, as well as the total
time for this frame (for the entire algorithm to process it). The speedup is defined as a ratio of an average
non-ROI processing time per frame (488 ms) to the actual running time for this frame (with the new
method). It is defined for all possible types of motion under any circumstances. Even though the second
movement triggers more frames where range computation is needed (due to the greater motion velocity),

very few (necessary) regions are selected for processing.

Table 1: Statistics for the forward hand motion.

Frame | Number | Total | % of | Time for | Speedup
(Fig. 5) | of ROIs | area of | area | this frame,
ROIs | size ms
1 3 5105 6.65 281 1.74
2 0 0 0 240 2.03
3 1 2030 2.64 261 1.87
4 0 0 0 233 2.09
) 0 0 0 227 2.15
6 0 0 0 233 2.09
7 1 3268 4.26 274 1.78
8 0 0 0 233 2.09
9 0 0 0 234 2.09
10 1 4992 6.50 280 1.74

Table 2: Statistics for the side-to-side hand motion.

Frame | Number | Total | % of | Time for | Speedup
(Fig. 6) | of ROIs | area of | area | this frame,
ROIs size ms
1 3 8690 | 11.32 287 1.70
2 0 0 0 240 2.03
3 1 690 0.90 267 1.83
4 1 837 1.09 267 1.83
) 1 837 1.09 267 1.83
6 0 0 0 233 2.09
7 1 868 1.13 267 1.83
8 2 6719 8.75 281 1.74
9 2 6425 8.37 280 1.74
10 0 0 0 241 2.02
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Average frame rate for longer sequences is also measured and averaged. Processing 1 range image for
every 4 color images is done at a rate of 10.6 frames per second for a 320x240 image size, and at a rate of
16.5 frames per second for 160x120 images. Therefore, the method is applicable to the real-time processing.
More over, since the Triclops library is currently optimized for thread parallel processing, a much greater
speedup can be achieved on a dual-processor NT machine (we plan to move the system there in the near
future).

The speedup is significant (between 1.70 and 2.15). Again, the speedup is defined as a ratio of an
average non-ROI processing time per frame (488 ms) to the actual running time for this frame (with the
new method). It is defined for all possible types of motion under any circumstances. However, the total
amount of computation for stereo processing per frame (required for the Sum of Absolute Differences
algorithm) is estimated as [22]: N2M2d(C — 1) P, where N? is the image size, C is the number of cameras
(three for the system used), and P is the number of operations per one square difference calculation.
According to this, the speedup per frame should be proportional to the ratio between ROI and image
areas. Experiments show that, for example, 6-8% ratio yields a gain of slightly more than 1.74 over non-
ROI implementation. One of the reasons is that rectification (distortion removal) is still done on the entire
image.

Another reason is that actual region sizes (for the correspondence matching between cameras) also
include the number of disparities d searched: for a K by L region, a left-to-right pass is done for a K (L +d)
region, and a top-to-bottom pass is performed for a (K + d)L region. Matching on the entire image does
not encounter this effect since there is obviously no data outside the image boundaries. Yet, these reasons
do not account for the differences between the theoretical and experimental speedup. An implementation
maximizing potential advantages of using ROIs can bridge this gap.

Motion trajectories for both hand movements in a 3-D space are shown in Figure 7. Zoom gesture
trajectory is shown as a solid line, and translation is denoted with a dashed line. It is obvious that
zoom gesture represents a significant change in Z coordinate relative to the almost constant depth during
the translation. Trajectory determines the type of gesture and intermediate hand positions. Data from
trajectory computations will be transferred dynamically into an appropriate (for the task) interactive

visualization software, where object of interest will repeat the same motion trajectory. Trajectory analysis
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is domain specific. Currently, we have HCI experts determining necessary gestures for controlling different

visualization packages.

Figure 7: Motion trajectories for both hand movements in a 3-D space: zoom gesture trajectory is shown
as a solid line, and translation is denoted with a dashed line.

Table 3 summarizes application of the method to a total of 800 images (20 sequences of 20 frames each
and 10 sequences of 40 frames each) taken in different settings with one or two people performing various
gestures. Quantitative analysis is performed for major groups of filters in the method (first column). The
only exception is a combination of color feature filters and noise removal filters, because, depending on
the scene complexity, total number of regions identified by color alone could reach hundreds (for example,
separate parts of the hand, hairs, small background elements, and the other minor noise). The second
column shows the number of detected regions identified as hands (at this step). This number slowly
converges to the correct number of hands used for object manipulation as additional filters are applied.
As a final result, all hands used for manipulation (where manipulation is identified by “grabbing”) were
detected (a total of 1098 since some manipulations require two hands). At the end, 39 false positives (FPs)
represent only 3.43%, false negatives are always less than 5%. This happens after all filter are applied,
including the final depth/absolute size filter which demonstrates the benefit of having 3-D data available
for moving regions of interest. The table also shows that static region detection yields not only a significant

speedup, but also an improved localization of hands during manipulations. It produces the best overall
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improvement (decrease in the percentage of FPs between the current and the previous step). Hands are
always detected in the initial frames (when they are present) which removes any unnecessary restrictions
on interactors (as described in Section 1.2). It must be noted, however, that there is a restriction on the
duration of a movement. Since range computation is selective, and at least three range images are needed,
it was determined experimentally that the velocity of motion cannot be increased drastically. In fact, the
duration of movements must be at least 1.42 seconds for 320x240 image size, and at least 0.91 seconds for

160x120 images.

Table 3: Results of hand(s) tracking in 800 images (20 sequences of 20 frames each and 10 sequences of 40
frames each).

Filters applied Detected | FPs | FPs, %
Color feature and noise removal 10475 7026 | 67.07
Region geometry 3449 1987 | 57.61
Static region detection 1462 325 22.23
Depth and absolute size 1137 39 3.43

4 Additional Aspects of Real-Time Range

Increased processing speed can also facilitate a combination of intensity- and range-based input features.
Range data enables localized search for specific features, which improves tracking reliability and speed.

Registered range data provides an additional information valuable for segmentation and tracking. Of-
ten, an object of interest can be separated from other objects or background by depth alone. In other cases,
having fewer artifacts (that could complicate segmentation) in range information compared to intensity
data is an important consideration for model matching [19].

Real-time constraints such as temporal correlation produce a possibility of searching within a smaller
region, based on the match in the previous frame. For the range image, this involves depth planes immedi-
ately surrounding the plane where a hand (or face) was found in the previous frame. Subsequent search in
the subset of the intensity data corresponding to these planes produces the position of the body part in the
current frame. Therefore, intensity data is thresholded for the certain range and depth. Such combined
use of input features produces not only a speedup due to a significant reduction in a search space, but also

increased reliability due to a decreased number of false positives that could fall in such space. Rather than
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processing all pixels, this allows us to select only those pixels with the certain depth, based on the depth
of the previously detected region of interest.

Two intensity images from a sequence of the speaking person are shown in Figures 8(a-b). More images
are not displayed due to space restrictions. A skin detection algorithm is applied to the intensity data from
Figure 8(a). Results of skin thresholding following color segmentation are shown in Figure 8(c). Pixels
classified as skin are white. Note that, along with the face and hand information, it picks up up parts of
other objects — a curtain on the right and a belt.

Instead of applying the color segmentation again, it is possible to take range data into consideration
by selecting one or more depth levels where a region of interest was found (Figure 8(d)). Since the motion
between two frames is small, the same level indicates approximate location of the hand in the next frame
(red areas in Figure 8(e)). This level, along with the two closest depth levels (before and after), constitute
the search space for the current frame (instead of the entire image). Search in the range domain prevented
us from considering intensity-based segmentation artifacts (such as a curtain and a belt). Depth level
search produces even better results when the hand is close to the camera (Figure 8(f-g)). Segmentations

along intensity and depth channels also can be performed independently and then combined.

(d) (e) (f) (g)

Figure 8: (a-b) Intensity images of the speaker; (c) results of skin segmentation and thresholding; (d-e)
range images with selected depth levels; (f-g) Depth level search results when the hand is close to the
camera.
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5 Conclusions and Future Work

This paper presented a new approach to a gesture-tracking system using real-time range on-demand. The
system represents a gesture-controlled interface for interactive visual exploration of large data sets. The
paper described a method performing range processing only when necessary and where necessary. This is
achieved by a set of filters on the color, motion, and range data. The speedup achieved is between 1.70
and 2.15. The algorithm also includes a robust skin-color segmentation insensitive to illumination changes.
Selective range processing results in dynamic regional range images (DRRIs). This development is also
placed in a broader context of a biological visual system emulation, specifically redundancies and attention
mechanisms.

The gesture-tracking system described in this paper will be responsible for supplying data manipulation
parameters to interactive data exploration and collaborative visualization software. Processing one range
image for every four color images is done at a rate of 10.6 frames per second for a 320x240 image size, and
at a rate of 16.5 frames per second for 160x120 images. Therefore, the method is applicable to real-time
processing. More over, as the Triclops library is currently optimized for thread parallel processing, a much
greater speedup can be achieved on a dual-processor NT machine (we plan to move the system there in
the near future).

Robustness of the approach is achieved with multiple input feature sets. Depth filters are necessary in
addition to color, motion and shape filters. Increased speed of processing can also facilitate a combination
of intensity- and range-based input features. Range data enables localized search for specific features,
which improves tracking reliability and speed. Applications described are tolerant to temporary tracking
confusions since the main goal of the gesture-controlled visualization is interactivity, not accuracy of in-
termediate states which are interpolated anyway DRRIs can be included in motion analysis, trajectory
computation, and gesture recognition, to determine what types of gestures are natural and feasible for

robust tracking and interpretation for interactive exploration of large data sets and virtual environments.
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